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A STUDY OF ADAPTIVE DETECTION OF RANGE-DISTRIBUTED TARGETS 

I.  INTRODUCTION 

A recent paper by Bose and Steinhardt [1] significantly advanced the theory of space-time adaptive 
detection of a desired signal in the presence of correlated Gaussian noise. Space-time adaptive detection 
is concerned with detecting a signal of partially known direction and doppler and unknown strengths 
across time (or range) in the presence of Gaussian noise whose covariance matrix is unknown. Their work 
generalized much of the adaptive detection research [2-6] of the last twenty years. A variety of application 
problems can be solved using their formalism. They did this by generalizing the desired signal waveform 
to be a rank one waveform (in matrix form) that is uncertain; i.e. only partially specified. More precisely, 
they modeled the space-time steering vector as a Kronecker product of two vectors, each of which is 
unknown but is known to lie in a known subspace. 

One limitation of their approach is that the dimensions of these subspaces are constrained with respect 
to the dimensions of the space-time array and the number of snapshots (data vectors) associated with the 
space-time array. These constraints were imposed because in the derivation of the Generalized Likelihood 
Ratio Test (GLRT) detector it is possible that a certain estimated covariance matrix could become singular 
which would significantly complicate the derivation. Hence constraints were imposed to eliminate the 
possibility of generating singular matrices. We introduce what we term a Modified Generalized 
Likelihood Ratio Test (MGLRT) detector in order to generate a useful detection structure for the case 
when the estimated covariance matrix is singular. 

In this paper, we solve a problem of practical importance which cannot be solved by the formalism 
of [1]. Consider the problem of adaptively detecting a range distributed target or targets. Suppose the 
desired target or targets could be spatially distributed across the entire range interval whose returns are 
to be used as the input data block (sensor x range) from which the adaptive detector is derived. Assume 
that the scatterers remain in their respective range cells during a coherent processing interval (CPI); i.e. 
the scatterers do not range walk during a CPI. The scatterers returns may be uniformly doppler shifted 
due to target(s) motion. If one uses a single point target adaptive detector (such as Kelly's [2] or the 
Adaptive Match Filter Detector [4,6]) to detect individual point scatterers across the range interval of the 
data block, significant detection performance degradation could occur in each range cell where a target 
scatterer is present due to the desired signal contamination of the secondary data (data where it is 
incorrectly assumed a desired signal is not present) [7]. Hence the total adaptive detection performance 
(detecting the presence of any target or targets across the range interval of interest) could be significantly 
degraded. 

We derive the MGLRT associated with adaptively detecting a range distributed target or targets. It 
is pointed out that our methodology is not restricted to detecting a single target that is range distributed 
(resulting from using a high-range resolution (HRR) radar waveform) but could also be used to detect 
a formation of targets with the same velocity that are spatially distributed in range (say from a low range 
resolution radar waveform). In fact the problem of signal cancellation that occurs when one performs 
single point target adaptive detection can be significantly abated by using the proposed methodology: 
instead of trying to detect individual targets and suffering the potentially large detection losses due to 
signal contamination, one should try to detect the presence of the target set within the input data block. 
A benefit of doing this is that there will be an effective integration gain of target returns which enhances 
the target set's detectability. Hence what was thought to be a source of performance degradation (signal 
contamination) can actually be a source of performance enhancement. Obviously, the range resolution 
of the target could suffer via this methodology but at least a detection may not be lost. 
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The outline of this paper is as follows. The MGLRT for a range distributed target(s) is defined and 
derived in Section II. Expressions for false alarm and detection probabilities are derived in Section III. 
Unfortunately, the MGLRT for a single data block is not a constant false alarm rate (CFAR) detector, 
i.e. the test statistic is not independent of the external noise environment. In Section IV, it is shown with 
the use of multiple data blocks how to construct a CFAR detector. In the preceding development, it has 
been assumed that the desired steering vector was known. In Section V, we derive the MGLRT for range 
distributed targets when it is assumed that the desired steering vector is unknown but lies on a known 
subspace. Some simulation results are presented in Section VI. In Section VII, the single point target 
MGLRT with assumed contamination of the secondary data is derived. However the resultant MGLRT 
is useless since it is shown that none of the secondary data is used. This was an attempt to solve the long 
standing problem of how to detect a point target in contaminated secondary data. The MGLRT formalism 
turned out not to be an effective solution. 

II.  MGLRT FOR RANGE DISTRIBUTED TARGETS 

A.  Preliminaries 

Data is collected from N sensors for a radar that has a transmitted waveform with a fixed pulse 
repetition interval (PRI). For example, the N sensor inputs could consist of an array of antennas and time 
taps (with the time delay equal to the PRI) of these antennas. A data vector consisting of K elements is 
collected from each sensor. The data associated with the &'th element of each sensor data vector is 
assumed to represent data coming from the Ar'th range cell. Assume that the target (or targets) is spatially 
distributed across all of the K contiguous range cells in some fashion (some range cells could have no 
target scatterers). The returns for the K contiguous cells on each of the N sensors could consist of the 
target returns plus interference or interference by itself. The interference, assumed to be strict-sense 
stationary, could come from a variety of sources: e.g. clutter, jamming, and system noise. Inputs are 
complex valued. 

It is pointed out that if we had assumed that only a specified m contiguous range cells out of the K 
range cells could contain target returns and K — m > N, then the methodology of [1] could be applied. 
However, for our development, it is reasonable to assume that we do not know which of the K range cells 
contain the target or targets. Thus we assume that the target returns could occur anywhere in the K range 
cells. 

We desire to construct a hypothesis test which distinguishes between the signal plus interference 
hypothesis (#,) and the interference only hypothesis (H0). Consider the two hypotheses: 

"o •     zk = xk n\ 
Hx :     zk = xk + ak"s     , k = 1, 2, ..., K 

where x^, zk, s are the interference vector, received vector, and desired signal steering vector, 
respectively, all of length N associated with the k-th range cell of the N sensors. The desired steering 
vector, s, is normalized so that sHs = 1 where H denotes conjugate transpose. For examples, the steering 
vector for the space/time adaptive processor (STAP) is the Kronecker product of desired angular 
(direction of arrival) steering vector and the desired doppler shift steering vector. The complex scalar 

ak" where * denotes complex conjugation is the unknown complex signal amplitude of the desired target's 
scatterer in the k'th range cell (we conjugated ak for notational purposes). Eq. (1) can be rewritten more 
succinctly as 



H« :   Z = X (2) 

where Z and X are denoted as the N X K input data matrix and interference matrix, respectively, a = 
(au a2, ..., aKf, and T denotes transpose. The input interference vectors, xk (k = 1, 2, ..., X) are 
assumed to be independent and identically distributed (i.i.d.) zero-mean complex circular Gaussian 

vectors. The covariance matrix of each vector is given by an A x A complex Hermitian matrix, R, 

which is assumed unknown. Assume K > N. For K > N and R positive definite, the rank of Z equals 
A with probability 1 [10]. 

It can be shown (see e.g. [8]) that the probability density function (pdf) for Z under each hypothesis 
can be written as 

H0 :   p0(Z; R) = —L- exp[- Tr{R*ZZ»}] ~8($Z) 

11*11* 
(3) 

//, :   Pl(Z; R, a) = _J1_ exp[- Tr{R\Z - saH)(Z - saH)H}] 5(*2
H(Z - saH)), 

11*11; 

where c is the pdf normalization constant, \\R~\\p denotes the positive determinant of R (the product of 

the positive eigenvalues of R), Tr{ } is the trace of the argument, R* denotes the Moore-Penrose 

generalized inverse of R, 8 is the product of Dirac delta functions of the matrix elements of the 
argument, and $2 will be defined shortly. The generalized inverse is defined as follows. We can write 

R = <M$" where $ is the N x N matrix of eigenvectors of R and A is the diagonal matrix of 

eigenvalues of R. Write A = diag {Xp X2, ..., \u, 0, ..., 0} where X,„ > 0, m = 1, 2, ..., M and 

M < A and A+ = diag {X^1, X2~', ..., Xw', 0,..., 0}. Then R* = <IA+<i>H [9]. Set $ - ($, $2)
H where 

the (N - M) x A matrix, $2, is associated with the null space of the columns of R. 

In the adaptive detection literature, it is almost always assumed that R is nonsingular so that R+ =R~l 

and II* lip = 11*11 where || -|| denotes the determinant of R. However, we will find in our formulation 
that this assumption need not hold. We will find that when we formulate a modified maximum likelihood 

(MML) solution, RMML, for R under Hx that /?MML can be made singular for a certain subspace of a. 

The GLRT is formulated as follows. 

sup />,(Z; R, a)   Hx 

-*?     > t. (4) 
sup p(Z; R)      ^ 

where R is the estimate of R under each hypothesis. It will be found for our problem (wherep0 and/?, 
are defined by (3)) that sup pt(Z; R, a) is unbounded. The pdf/?, is infinity as the range space associated 

with the columns of R overlaps the null space associated with the columns of Z - saH. The null space 
of Z - saH is non-empty if we can choose an a such that Z - saH has rank less than N. If Z has full 



rank, we can always find an a that drops the rank of Z - sa" to N - 1. For example, set a = Z"s. 
Equivalently, px approaches infinity as (R, a) approaches (with respect to some distance measure) a 
member of the following set, S 

S = {R, a | P(R) = N - 1, R = (Z - sa") (Z - sa")"} 

where p(-) denotes the rank of the argument. Here, we see S consists of the subspace of a where (Z - 
sa") (Z - sa")" is a singular matrix. Thus it would seem that a useful GLRT for this problem does not 
exist since sup p{ is unbounded. As Grenander [13] points out, in certain ML problems the parameter 

R,a 
space is too large. He proposes salvaging the method by performing the maximization over a non-trivial, 
constrained set. This method is called the "Method of Sieves." Using the Method of Sieves [13], we 
can restrict (R, a) to a reasonably subspace such that a maximum likelihood solution exists. Intuitively 
it would seem that if there were a useful estimate of (R, a), it should come from set S since there exists 
(R, a) in the neighborhood of a given member of S which yield an arbitrarily large value for/?,. Thusly, 
it will be found that a reasonable estimator and detector can be found for this problem when we restrict 
(R, a) to be a member of S. However, on this subspace we maximize with respect to R the multipliers 

on the 8 functions seen in Eq. (3). Set mQ{Z;R) and m^Z; R, a) equal to the multipliers of the 8 
functions for p0 andp,, respectively seen in Eq. (3). On this subspace for cases of interest, sup /n, (Z; 
R, a) < oo since mx is defined by (3) for all R with rank greater than or equal to one. It will be seen in 
the following subsection that we will have to further restrict the form of R in order to obtain a unique 
ML solution. Hence this suprema will be used in the likelihood ratio test expression and a finite test 
statistic results (see [15] for other examples of where the Method of Sieves is used for estimating 
covariances matrices). We note for the case when N = 1 that sup ra,(Z; R, a) is unbounded. This case 

was presented in [14] as a counterexample to the statement that a maximum likelihood estimator always 
exists. 

When we restrict the subspace of the unknown parameters and find the maximum of the multiplier 
of the delta function for each pdf of the received data (under either hypothesis) with respect to the 
unknown parameters, we call this the modified maximum likelihood (MML) estimate. When we use the 
ratio of the m, and m0 estimates we call this the modified GLRL (MGLRT). As in the case of the GLRT, 
there is no claim to optimality as a detector for the MGLRT. However, as in the case of the GLRT, the 
MGLRT seems like a reasonable approach for finding a good detector. This property of "goodness" must 
be checked out via simulation and comparison with alternate approaches. We will see that the MGLRT 
for this particular problem is a useful detector. However, as we will show in Section VII for a different 
detection problem, a useful solution does not always result. 

B.  Modified Maximum Likelihood Solution for a Singular Sampled Covariance Matrix 

Let Z have the following pdf: 

pfZ; R) = _4— exp[- Tr{R* R}] 8($Z), (5) 

where N > 2, R = ZZ" can be singular with at least rank 1 and R has at least rank 1. If p(R) = M<N 

then it can be shown that the ML solution for R does not exist. However, we can find a unique MML 

estimate for R by restricting R as follows. Define the set S0ofNxN matrices: 



S0 = \R\R = 4> 
A   0 
0   0 

|," (6) 

where R = <f>A<l>H is the eigenvalue decomposition of R and A is any p(R) x p(R) matrix. Then we 
will show, RMm   = arg max m0(Z, R); i.e., a unique MML solution exists on S0. 

R6S„ 

We will need the following lemma for our development of the MGLRT. 

Lemma 1:  If we restrict R £ S0, the MML estimate solution for R is RMML = R. 

proof: We desire to solve 

^MML 
= ar§ max mo(Z; R)- (7) 

R£50 

This is equivalent to solving 

RMML = arg min [K In \\R\\p + 7V{7?+fl}]. (8) 

Rewrite (8) as 

««, 

tfMM1   = arg min [K In \\R\\    + 7r{/r*A$"}]. (9) 
fies„ 

This can be shown to be equivalent to finding a matrix R0 such that 

fl0 = arg min [K In K||„ + 7V{i?<;Ä}], (10) 
K„6S, 

where 

R0 = *"/?*, (H) 

■S, is defined as 

5i = j^ol^o =  o   0 | 
(12) 

and A is any p(R) x p(R) matrix. Let Ar be the p(i?) x p(R) diagonal matrix of the positive diagonal 

elements of A.  Then (10) is equivalent to finding 

A^ = arg min [K In \\Aj   + Tr{A%}]. (13) 
A 

It is well-known that v4min = A and the lemma follows. □ 



C.  MGLRT Derivation 

Using Lemma 1, we find that 

sup m0(Z; R) 
\zz"\\l 

exp - Tr{(ZZHyZZ"}. (14) 

We assume that K > N and the underlying covariance matrix for the AMength z vectors is positive 

definite, so that ZZU has rank N with probability 1, [10]. Thus 

sup mQ(Z; R) = - 
R \\ZZ H \\K 

where c' is a constant. 

Again using Lemma 1: 

sup mXZ; R, a) =   
II* MML II P 

exp - Tr{RuMLRa}, 

where 

*MML =Ra - (Z - saH)(Z - saT- 

We note that if R  has rank N - I, then Tr{R+R } = N - 1. Thus 

sup m{(Z; R, a) 
|(Z-saH)(Z-saT||; 

where c" is a constant. Thus the MGLRT takes the equivalent form 

(15) 

(16) 

(17) 

(18) 

|| ZZ» || 
> t. 

min    ||(Z-saH)(Z-saH)H|L   H 

(19) 

Henceforth for convenience, we shorten our notation for expressing the domain over which the 
minimization of the positive determinant is taken. It will be assumed that the domain is restricted such 
that the matrix in the argument of ||-||p is singular. For example, we write min |-||    instead of 

a 

min     \\-\\p.   The optimal solution for a is given by the following theorem. 



Theorem 1: The solution for aMML = arg min ||(Z - sa")(Z - saH)H||, is given by aMML = ZHs. 
a 

proof: Let As be a unitary N x N matrix such that 4s = 10 where 10 = (1 0 0 ... 0)T. Let the Q - R 
decomposition of ASZ = [L : 0NK_N]Q where L is an N x N lower triangular matrix (LTM), ß is a K 
x K unitary matrix and 0NK_N is a N x (K - N) matrix of zeros. Now 

||(Z - sa»)(Z - saH)»||, =  \\Aß - saH)ßHß(Z - sa")H4% 

=  \\[(L : 0NKJ - l^HO- : <W - IX]"!,. 

where ao = ßa. Thus an equivalent problem to finding the optimal a is to find the I0 that minimizes the 
far right hand side (RHS) of Eq. (20). Equation (20) can be further simplified to yield 

a"0 = arg min ||(L - 10^)(L - l0a\l)u + al0l0
T||„ (21) 

where a, is an JV-length vector of the first N elements of ao and a is the sum of the magnitude squares 
of the last K - N elements of ao. Using Weyl's Monotonicity Theorem [9], the n'th ordered eigenvalue 

of    (L - l0a")(L - l0a,H)H + al^  is greater than or equal to the n'th ordered eigenvalue of 

(L - l0a,H) (L - l0a,H)". This implies that (21) is minimized with respect to a when a = 0. Thus our 

problem is reduced to finding an N-length vector a, such that 

I, = arg min ||(L - l0a,H)(L - l0aj')"|„. (22) 

If L= (/,„„), we will show that a, = (/,; 0 0 ... 0)T. 

Set a,H = a"L. Thus our problem is equivalent to finding an TV-length vector a2 such that 

52 = arg min ||(/„ - l0a2
H)LL "(/„ - l^Vl, (23) 

where IN is the N x N identity matrix. In order for the matrix in the argument of || -\\p to be singular, 

it is required that IN - l0a" is singular which will be if and only if 

a2
Hl0 = l- <24> 

Using singular value decomposition (svd), it can be shown that 

IN - l0a? = PAß«, (25) 

where ß, = [ßxl, 10] is an N x N unitary matrix, QiIo is an N x (N - 1) matrix consisting of 



columns that are orthogonal to 10; P, 
a, 

P 2 

la'"N 
is an N x N unitary matrix, Pla  is an N X 

*2l 

(A - 1) matrix consisting of columns that orthogonallo a2, and A, is an N x N diagonal matrix with 

diagonal elements: X,, = (a2'a2)1/2, X12 = X13 = ... = X1W_, = 1, and Xw = 0. 

We can show 

|| (/„ - l0a«)LL "(/„ - lfla2
H)H |, = | K£?LL «fi.A, ||, 

(26) 

= (a2
Ha2) || QuLL»Q±K|| . 

It is proved in Appendix A (Lemma 1A) that if ßxi0 and ßi2),o are any two N X (N - I) matrices whose 
columns span the space that is orthogonal to 10 then 

«ö^ßi'a = iiö^Höiu- (27) 

Hence we can always find aß.,  that is independent of a2 and the minimization of the far RHS of (26) 

is independent of the positive determinant term. Hence, we desire to find a2 = arg min a"a2 with the 

constraint a"l0 = 1. Obviously a2 = (1 0 0 ... 0)T. Working backwards, it is straightforward to show 

ä, = LH0, i0 = (L:0NK_Ny\, and a = ß»ä0 = ßH(L:O^J« ASAX = ZHs = aMML. D 

Collecting our results, we have the following result. 

Theorem 2: The MGLRT for detection of a target (or targets) that are range distributed is given by 

ß = »ZZH11     >' t. (28) 
ll^-ss^ZZ^-ss")!,    < 

We see from the form of ß that the denominator term which was derived under H{ (signal plus noise) will 
be without the additive desired signal vector because IN — ssH is the null projection matrix of s. Thus 
(IN — ssH)Z will contain no desired signal. 

We now present a simple procedure for finding ß. A unitary matrix Bs exists such that 

Bss = (0 0 ... 0 1)T = 10. (29> 

Let the ß - R decomposition of BsZ = [L : O^.^Jß where L is an N X NLTM. It is straightforward 
to show that the test statistic ß defined by (28) reduces to 



ß = 
III "II 

(30) 

(31) 

||(/W-1010
T)LL"(/W-1010X 

If L = (/„,„), the above reduces to 

p   = lNfj- 

Thus the procedure for finding the detection statistic is straightforward: 

1. Perform the Q - R decomposition of the N x K data matrix, Z. 

2. The MVth element of the N x N triangular matrix associated with the Q - R decomposition is 
the test statistic. 

III.  FALSE ALARM AND DETECTION PROBABILITIES 

A.  Probability of False Alarm 

We can derive the pdf of test statistic, ß, under the H0 hypothesis by using the equivalent form 

||ZZ"|| 
ß (32) 

!(/„- y^zzX-Mo)II, 

where Z = BZ and 5 s = 10. Let R be the true covariance matrix associated with any column of Z. 

Let R = LLU be the Cholesky decomposition of R where L is anN x NLTM. Thus we can construct 

the transformed data matrix as Z = LV where V is a N x K matrix of i.i.d. zero-mean complex circular 
Gaussian random variables with variance equal to one. Hence 

||ZZ"|   =  «LVV»LH||   =  \\L\V\\VV»\\. (33) 

Now 

V„ - Mo)z = 
Lt Ojj-, Vn Wl 

_ow_, 0 _VN_ ol 
(34) 

where L, = (N - I) x (N - 1) matrix of the first JV - 1 rows and columns of L, Vn = (N - 1) X N 
matrix of the first N - 1 rows of V, vN = last row of V, and 0„ denotes a column vector of n zeroes. 
Thus 

\dN - i0i0
T)zzH(V- MoT)ll, = l^vM IAII2I v.KW, (35) 

and 



ß = \\L\\2   .    |VV«| 

I4II2    IK^'I 
(36) 

If 4 = (U. then ll£ll2/14ll2 = ^- Let the ß - 7? decomposition of V = (L rO^Jß, whereL, is 

an N X N LTM and Lv = (/,£)). It is straightforward to show 

|| VVH |1 

K<ll 
= rr'i2 

V-NNI > 
(")l2 (37) 

where [/^]2 is the sum of the squared magnitudes of K - N + 1 zero-mean complex circular Gaussian 

r.v.'s with variance equal one [11]. This results in 2[lN
v)

Nf having a chi-square pdf of order 2(K - N + 
1). Set 

ß 

Thus ß has the following pdf 

Pß(ß\H0) 
1 

and 

I2 L
NN 

1 
(K - N)l   ~i 

(v)2 (38) 

' ß ' 
V 1 NN 

K-N 

exp ß 
V L NN 

(39) 

^ pß(ß\H0)dß. (40) 

We observe that the MGLRT for a range distributed target(s) is not a CFAR detector with respect 
to the external noise environment; i.e. the test statistic and hence the false alarm probability, PF, is a 
function of a parameter of the true covariance matrix of external noise environment. From (39), we see 

that the test statistic's pdf is a function only of lNN which depends on the true covariance matrix R which 

in turn depends on the true covariance matrix R. 

Because the PF is a function of a parameter of the external noise environment, there would seem to 
be no way of a priori specifying a threshold, T, in order to attain a given PF. A methodology to overcome 
this deficiency and make the derived adaptive detection scheme practical is as follows. Let the first ND0F 

columns of L approximately span the vector space associated with the external jamming where ND0F 

represents the number of degrees of freedom (DOF) necessary to span this space and ND0F < N. The 
amplitude levels of the elements of the first ATD0F columns tend to be above the average internal noise 
amplitude level which we assume without loss of generality equals one.  The last N — ND0F columns of 

L approximately span the null space of jamming or equivalently the internal noise space. The amplitude 
levels of elements of the last N — ND0F columns are approximately at the averge internal noise amplitude 

level. Hence / NN 
1. For the jamming scenarios when ND0F < N, it will be found that the external 

jamming can suppressed at or below the internal noise by the non-adaptive matched filter (i.e. form 

sHÄ"'Z). 

10 



A methodology for insuring that a given PF is not exceeded would be to first find the maximum of 

lNN over all the expected external noise scenarios (in a systems design, this is normally known). If the 
non-adaptive matched filter is working well (i.e. suppressing the external noise below internal noise, 

which in most cases is the design goal and drives the design specification), then max lm should be at 
or about the internal noise level (which is usually normalized to one). We form the following test statistic: 

ß = 
LNN 

max Vm 

< /(v)2 = ß —   LNN     —   P ■ (41) 

Thus 

PF = Prob {ß > t\H0)  < Prob {ß > t\H0}  = PF 
(42) 

If we choose t based on obtaining a desirable PF, then the actual PF is always upper bounded by PF. 

Finally, in Section IV we introduce a technique which is CFAR but will require more than one block 
of input data. 

B.   Probability of Detection 

In most cases of interest the probability of detection PD will be computed using Monte Carlo 
methods. One example of where we can find the PD explicitly is the following. Assume that range 
distributed complex amplitudes of the desired target are i.i.d. zero-mean complex circular Gaussian r.v.'s 

with variance equal to a). In this case we find that [O2 (see Eq. (37)) is the sum of the squared 
magnitudes of K -  N +   1  zero-mean complex circular Gaussian r.v.'s with variance equal to 

a2(sHi?-'s) + 1, [11].  Set  a]s = o2
s(s"R-ls).   We find that for the test statistic given by (38) that 

2{a)s + l)/^2 has the chi-square pdf of order 2(K - N + 1). Hence we can write the pdf of ß under the 
Hj hypothesis as 

p,{ß\nx) = 
l l 

<*" ^! iM +1) 

ß 
iL(°l+1) 

exp ß 
KN(°1 

+1) 
(43) 

and 

PD = j^ßltf^ß. 

IV.  A CFAR DETECTOR FOR RANGE DISTRIBUTED TARGETS 

(44) 

From the test statistic form given by (38), it is seen that for a given block of data, Z, that the test 

statistic under H0 is the product of a term that is a function of the noise environment, lNN and one that 

is not, Ifw . We can create a CFAR detector by using the MGLRT test statistics over multiple blocks of 
data where each block of data is associated with non-overlapping range intervals. We assume that the 
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interferences from the various range intervals are independent but that any snap shot of data (or //-length 
vector) share the same N x N covariance matrix, R. 

We define Z to be the primary N x K data matrix and Z,, m = 1, 2, ..., M0 to be M0 secondary 
N x K data matrices where we assume the noise vector component of the columns of Z and 
Z (m = 1 2 ..., M„) are i.i.d zero-mean complex circular Gaussian r.v.'s. Let ß, ß ß2, ... ßM be 

the GLRT test statistics for the primary and secondary data, respectively. We form the test statistic 

V = 
ß_ 

(45) 
£ ß« 
ra=l 

If we assume that only the primary data can contain the desired signal, then (45) takes on the appearance 
of a cell-averaging CFAR. Based on the form of the individual MGLRT test statistics given by (28) it 

is seen that under H0 that the common factor of VNN cancels from the numerator and denominator of (45) 
and that t) is independent of the external noise environment. Hence (45) defines a CFAR detector for a 
range distributed target. 

We point out that we could have also formed a CFAR detector under these assumptions using the 
single point target Kelly detector. For this we would perform single point adaptive target detection for 
each range cell of the primary data and use the secondary data (i.e., the KM0 data vectors) as the 
secondary data vectors of the Kelly detector. After doing this, a 1 out of K detector could be used to 
determine if a target is present. A disadvantage of using this detector term versus the proposed CFAR 
test (Eq. (45)) is the computational cost: a detection statistic must be computed for each range cell using 
the single point Kelly detection scheme (this includes all possible ranges) whereas our proposed CFAR 
test processes the ranges in blocks of K ranges. 

Since ß, ßm(m = 1, 2, ..., M0) are all chi-square distributed under HQ, it is clear that 77 will have 
an F distribution under H0. In fact, if we set 

ßl[2{K - N + 1)] 
V      ~K ' (46) 

£ ßJ[2M0(K -N+l)] 

then p (ij I H0) = /(ij; 2(K - N + 1), 2M0(K - N + 1)), where/ is the pdf associated with the central 

F distribution with parameters p = 2(K - N + 1), q = 2M0(K - N + 1). Thus 

PF =  f " f(V, 2{K - N + 1), 2M0(K - N + l))dv. 
(47) 

We can obtain the PD for the special case where the range distributed complex amplitudes of the 

desired target are i.i.d. zero-mean complex circular Gaussian r.v.'s with variance equal to a]. It will be 
found that 
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PS* I #,) = 
ff„ + 1 

/ 1 ; 2(K - N + 1), 2MJK - N + 1) 
ff„ + 1 

and 

(48) 

1 r   oo 

—        / 
+ 1   J' + 1 

.; 2(K - N + 1), 2M0(K - N + 1) rfjj, (49) 

where a„ = aJ(sH/?-'s). 

V.  MGLRT FOR SIGNALS ON A SUBSPACE 

In this section, we derive the MGLRT for a range distributed target or targets when the desired 
steering vector, s, is not known explicitly but is defined to be on a known subspace spanned by the 
columns of the N x Ns matrix, Ps where the columns of Ps are orthonormal and 2 < Ns < N. Thus 

Ps Ps = IN and s = PS where s is an JVS x 1 vector of unknown complex values with the constraint 

SHS   =  SHS   =   1. 

The MGLRT that results can be derived in similar fashion as the one derived in Section II when s 
is assumed known. The test statistic is given by 

ß = 
\ZZU\\ 

mm 
s,a 

(Z - saH)(Z - sa'y (50) 

with constraint sHs = 1. From Section II, we know that 

ZHs = arg min ||(Z - sa")(Z - saH)H| (51) 

Thus we desire to find 

s = arg min ||(/„ - PßsHP,H)ZZH(IN - PJssHP1
H)H (52) 

For notational convenience, we define ||^4||     to equal the product of the positive singular values 

of A and recognize that fl^H^, = ||i4.4H|| . Thus (52) can be rewritten as the equivalent problem. 

I psv 
s = arg min ||(/„ - P^SHP,H)Z|| 

s 

Let Lz be the N x N LTM associated with the g - R decomposition of Z. Then 

s = arg min ||(/„ - Pßs"P,")Lt fl    . 

(53) 

(54) 
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We set P  = [P    :P] where P1P is an N x (N - Ns) matrix whose columns are the orthonormal 

vectors that span the null space of P,. Thus Ps is an N x //unitary matrix and PHP   = IN. Now 

||(/„ - Pß~s"Ps
H)Lz\\psv = |P/X - ^WÄW 

= ie* - P?P*&P?P)PX wpsv 

[°™, 1 [vWf 1 H 

L, - /, 
*N sz 

s s 

(55) 

psv 

where L„ is the LTM associated with the Q - R decomposition of Ps Lz. Also 

T- 

*s- 
X-N. ' 

S 

X-N. ' 

S 

H 

L   = 
sz 

*- 

• (11) 

(21) 

JN-N,N 

??Hxr (22) (/„   -   §§")£.£ 

(56) 

where we have written Lsz as 

L 

i-(ID     o 

r (21) 
L'S7 

(22) 

r (II)   • Lj-    is an 
(22) 

(57) 

(A/ - Ay x(N- Ns) matrix, L;,    is a ty x (W - Ns) matrix, and L;, ' is a ty x W, matrix. 

It is seen that the product of the positive singular values of the matrix given by (56) is equal to the 

product of the diagonal elements of L£" (these elements are positive with probability one) and the 

product of the positive singular values of (IN - ssu)L™. Hence the minimization of the far RHS of (55) 

is equivalent to 

s = arg min \\(IN - ss»)L(*> \\psv. (58) 

Write the SVD of L)r as (22) 

(22) p(22)A(22)/0(22)H 
ra   lysz   xZsz       > 

(59) 

where P™ and Q™ are Ns x Ns unitary matrices and A^2) is an Ns x Ns diagonal matrix whose 

elements are the N singular values of L™. It is known [1] that (58) is minimized when s equals the 

column of Pi22' associated with the largest singular value of L^\ Call this solution, smin. 
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We can rewrite the MGLRT test statistic as 

\\L 

liU)     °, N-N„N 

(21)       (i ~      ~H  \ T (^ 
Atz { N.   ~~  SminSmin^5z 

(60) 

psv 

Let o , n = 1, 

Then 

..., Ns be the singular values of L^2) where a,  > a2 > («)\ a„ and setL    = (O 

n < <n) 

0 = 
m=N-N*l 

N 

n *. 
(61) 

ra=2 

The procedure for finding the MGLRT test statistic of a range distributed target or targets with s on 
a subspace is as follows. 

1. Set Ps = [Pls, P] 

2. Find the N x N LTM, Lz, associated with Q - R decomposition of Z. 

3. Find the N x N LTM, Lsz, associated with the Q - R decomposition of P^L . 

4. Find the singular values of L^2), defined by (57). 

5. Form the test statistic as given by (61). 

We point out that the distribution of ß under HQ for Ns > 2 is a function of the covariance matrix and 
2-thus the detector is not CFAR. Furthermore, we know of no methodology at this time similar for the 
Ns = 1 case presented in Section III which results in a detector which is CFAR for Ns > 2. 

VI. RESULTS 

In this section, we present some simulation results demonstrating the effectiveness of the derived 
MGLRT in detecting a range distributed target or targets. We compare the performance of the new 
detector with that of what we call a M out of K Kelly detector which we now describe. The M out of K 
Kelly detector consists of two levels of detection. The first level is a single point scatterer Kelly detector 
[2]: a given range cell in the N x .Kdata block is considered the candidate or primary data. This primary 
data is an N x 1 vector. The other K — 1 range cell data are used as the secondary data which are 
assumed in the derivation of the Kelly detector not to contain any of the desired signal. This secondary 
data is represented as a N x (K - 1) secondary data matrix. The standard Kelly detection'statistic is 
computed for each candidate range cell (a total of K) where the candidate or primary range cell is varied 
over all possible K range cells. The output from each of the K hypothesis tests is either a zero or one. 
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The second level of detection consists of counting the number of detections out of K from the first level 
detector and comparing this integer, m, to the integer threshold, M, of the second level detector. If m > 
M, a detection of a target in the N x K data block is declared. A disadvantage of the M out K Kelly 
detector is that in practice we must set M = 1. Otherwise for scattering scenarios where the number of 
scatterers in the K range cells is less than M, the probability of detecting the target on targets would be 
almost zero. For a more complete description and analysis of the M out of K Kelly detector see [12]. 

We present results for a single representative case which will illustrate the performance advantage 
that the MGLRT of a distributed target(s) has over the M out of K Kelly detector when there are multiple 
scatterers (or targets) in range. For our example we assume the inputs to the adaptive processor are the 
received returns for an N element linear array (half-wavelength spacing) with no time taps. We use the 
narrowband assumption so that the desired signal vector and jamming vectors can be represented as 

(1/\Z/V) (1 e® em ... eÄN~m)T. Assume a single jammer is the only source of external interference so 
that the N x N covariance matrix is given by 

R = o)u» + IN 
(62) 

where a] is the power of the jammer referenced to the internal noise power of each antenna element 

receiver, J = (1///V) (1 e'*' e^' ... gJ('v""^)T
> ^y is the array phasing of the jammer, and IN is the N 

x N identity matrix which represents the covariance matrix of the internal noise contribution of each 
antenna element receiver. 

For the simulation, we choose s = (1/\[N) (1 1 ... 1)T, the number of samples per receive channel, 
K = 15, the number of sensor inputs, N = 8, and the probability of false alarm = 10"4. In Fig. 1, the 
probability of detection (PD) performance of a single point scatterer Kelly detector (not the M out K Kelly 
detector) and the MGLRT of a distributed target(s) are plotted versus the input signal-to-internal noise 
power ratio for the case when there is only one scatterer present in the N X K data block and the 
jamming power is zero. It is seen that the MGLRT detector of distributed targets slightly out-performs 
the single point scatterer Kelly detector. In Fig. 2, the setup is the same as Fig. 1 except now we have 
two distinct (different range cells) equi-powered scatterers. The sum of the SNR's of each scatterer equals 
the input SNR. We see clearly that the single point scatterer Kelly detector is significantly effected by 
the presence of a desired signal (one of the scatterers) in the secondary data. In fact, as the power of the 
second scatterer increases, the SNR losses become much greater (this was also shown in [7]). We show 
the single point scatterer Kelly performance in order to demonstrate that the M out of K Kelly detector 
could perform poorly in a multiple scatterer scenario because of the poor detection performance in the 
first level of detection. We now present results for the M out of K Kelly detector versus the GLRT of 
distributed target(s) which show this. 

In Fig. 3, we compare the PD performance of a 1 out of K Kelly detector with the MGLRT detector 
of a distributed target(s) of a single scatterer when the interference scenario consists of a single 30 dB 
jammer (with angle .6x) and internal noise. We see that the new detector slightly out performs the 1 out 
of K Kelly detector. The setup is the same for Fig. 4 as for Fig. 3 except two distinct equi-powered 
scatterers are present. We compare the 1 out of K and 2 out of K Kelly detectors with the GLRT of 
distributed target(s). The 2 out of K Kelly detector is superior to the 1 out of K Kelly detector and the 
new detector is clearly superior to the 2 out of K Kelly detector. 
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We also point out that the new detector's detection performance is about the same for when there are 
one or two scatterers present. Also the detection performance is about the same for the example when 
jamming is present or not. For the jamming scenario, the ATth diagonal element of the Cholesky factor 
of R is approximately equal to one. Hence based on the results of Section 3A, the desired thresholds for 
a given Pr for the two noise scenarios are approximately equal. 

What is lost by using the MGLRT of a distributed target or target(s) instead of a single point scatterer 
Kelly detector? Clearly, the range resolution is degraded. With the new detector one only knows that 
there is a detection among the K range cells. If we are looking for multiple targets, we obviously desire 
to know how many are present within the K range cells. This information might be obtainable if after a 
detector indication by the new detector, the single point scatterer Kelly is applied to each range cell in 
order to see if individual range cells are detected thus restoring to some degree the original range 
resolution capability of the receiver. 

Finally, the new detection scheme could be used to reduce the processing load of a range cell-by 
range cell single point scatterer adaptive detector; the new detector would be used as a first level detector 
indicating whether a target or targets are present in a set of range cells. A second level of detection using 
the single point scatterer adaptive detector would be invoked if a detection recurred in the first level of 
detection. 

VII.  A COMMENT ON THE MGLRT FOR A SINGLE POINT TARGET 

Almost all of the adaptive detection literature has been concerned with detection of a single point 
target; i.e., the target is modeled as a single point scatterer that is completely contained within a single 
range cell. The data that can contain the desired target returns is called the primary data vector. Returns 
from other range cells are used to form secondary data vectors. The effects of contaminated (by desired 
signals) secondary data on performance of the Kelly detector and the AMF detector were examined in 
[7] for the case where the target is modeled as a point scatterer. It was shown that significant degradation 
in detection performance can occur when multiple targets of equal scattering strength are contained within 
the same block of primary and secondary data. The two detectors, the Kelly and AMF, do not take into 
account the possibility of contamination of the secondary data by other target returns. The search for an 
effective adaptive detector against secondary data that has been contaminated has been a long standing 
unsolved problem. In this section we derive the MGLRT for this problem. We assume that the steering 
vectors associated with the contamination are identical. In practice, this is often the case, since in a given 
range interval which is used to construct the primary and secondary data, multiple targets are usually 
transiting at the same speed and direction (such as a formation of air targets). 

Interestingly, it will be found that the derived MGLRT does not use the secondary data at all. Hence 
the derived GLRT is not useful as an adaptive detector since one normally uses the secondary data to 
estimate the unknown covariance matrix of the received interference. As a result, the MGLRT formalism 
for solving this problem is not the solution and the search for an effective adaptive detector against 
secondary data is still an open problem. 

We now briefly outline the derivation of the MGLRT for single point target and show that the test 
statistic is independent of the secondary data set. We collect data from N sensors and form a primary data 
vector associated with a given range. We also collect data from the TV sensors at K - 1 other range cells 
and form K - 1 secondary data vectors where other targets returns may be present. The hypotheses are 
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.      zo      xo 
°'     zk = xk + ak"s    k = 1, 2, ..., K - 1 

(63) 

Z„   =   X„   +   ön's z0 = x0 + a0 s 

''     z^ = xA. + at*s     k = I, 2, ..., K - I, 

where   ZQ   is   the  primary   data,   zk(k = 1, 2, ..., £)   are  the   secondary   data  vectors,   XQ   and 

xk(k = 1, 2, ...,£) are the interferences and at*(A: = 0, 1, ..., K - 1) are the complex signal 
amplitude associated with the yt'th range cell. Similarly to the development of Section II, (with the same 
assumptions on the interference), we can derive the MGLRT statistic as 

min || (Zs - so£)(Zs - sa")H + zQz0
H| 

min || (Z - sa,H)(Z - sa,H)H| 
(64) 

where Zs = (z, z2... zK_{) is the N x (K - 1) matrix of secondary data, Z = (z0 : Z) is the N x K total 

data matrix, a0 = (a,, av ..., ^_,)T, and a, = (a0, a,, ..., ^_,)T. Let Q^ be a unitary matrix such 

that Qzz0 = |z0|l0 where |z0| = (z^z0)"
2. Define Z = ß2Z, Z = QZ = (|z0|l0 ; Z), and 

s„ = ß s. Thus (64) can be rewritten as 

min  || (Z, - s0a0
H)(Z, - s0a0

H)H +  IzJVoX 
ß =    "" (65) 

So«! ) Wp min  || (Z - sa")(Z - s0a,H)| 

The solution for a, was derived in Section II: 

«r = S0
HZ. <66) 

The solution for a0 in the numerator of (65) is now considered. The numerator can be rewritten as 

NUM = min ||(Z - s0arH)(Z - s^Yll,, <67) 

where a = (0 ■ a0)
T. It is straightforward to show that there exists an a of this form such that Z - s0a

H 

has rank N - 1. Hence, we look for solutions for a on the space where Z - s0a
H has rank N - 1. 

We will need the following lemma in order to proceed. 

Lemma 2: If Z - s0a
H has rank N - 1 and Z has rank N, then there exists an //-length vector s0 such 

that 

(/„ - s0s0
H)Z = Z - s0««, <68> 
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with SÖ'SQ = 1. 

proof: See Appendix B D 

Using Lemma 2, we see that finding a is equivalent to finding 

s0 = arg min \\(IN - s0s")Z||^v. (69) 

Set s0 = (s0I s02 s03 ... s0N)T. Because aH = s0
HZ = s"(|z0|l0 ; Z) and the first element of a is zero, 

it follows that J0",  |z0|  =0. Since |z0|   ^0 with probability one, the first element of s0 must be zero 

or sm = 0 which is a constraint on the minimization problem posed by (69) along with the constraint 

s"s0 = 1. Using a methodology similar to that of finding the solution for (23), we can show that (69) 
is equivalent to solving the following problem 

min So s0     , constraints s0I = 0   , sHs0 = 1. (70) 
s 

It is straightforward to show that the optimal solution is given by 

s    = °" «=23 N Ao»       ~N       ' '     '  ■■•'JV- (71) 

V   \s   I2 

« =2 

This solution is substituted into the following equivalent GLRT test statistic 

ß =   11 (^ ~ s0s")ZZ!\l - S0SQ
H
)|1, (?2) 

ll^-s^ZZV-SoSo")!/ 

It is straightforward to show that ß reduces to the following simple form: 

ß = s0
Hs0. (73) 

The elements of s0 are derived from the elements of s0 which equals Q s. Thus s0 is only a function of 

the primary data Zg and not a function of any of the secondary data, Zs. Hence this detector is not useful 
since it essentially throws away the data that would be used to estimate R. 

Recall for the adaptive detector of a range distributed target that under Hx (signal plus noise) that the 
MGLRT projected the data matrix, Z, onto the null space of the desired signal vector. Hence, a hueristic 
adaptive detection scheme for a point target with contaminated secondary data would be to project the 
secondary data matrix onto the null space of s under the H{ hypothesis. The resultant heuristic detector 
has the form 
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||(/„ - ss")ZZ''(/„ - ss") +z0z,TII (74) 

Ul„   -  88«)ZZ«(IH  - 8S»)lp 

This also turns out not to be an effective detector. In fact, the detection statistic is approximately equal 

to |sHz0|
2 where again the secondary data is not used. 

VIII.  CONCLUSIONS 

A Modified Generalized Likelihood Ratio Test (MGLRT) for the adaptive detection of a target or 
targets that are distributed in range was derived. The unknown parameters associated with the hypothesis 
test are the complex amplitudes in range of desired target and the unknown covariance matrix of the 
additive interference which is assumed to be characterized as complex zero-mean correlated Gaussian 
random variables. The target's or targets' complex amplitudes are assumed to be distributed across the 
entire input data block (sensor x range). Results on probabilities of false alarm and detection were 
derived. The MGLRT statistic was found to be dependent on the external noise environment and thus 
does not have the desirable quality of being a CFAR detector. 

Methods were presented which would make it almost CFAR (upper-bounded PF) if only one input 
data block were used and CFAR if multiple input data blocks were used. Some simulation results were 
presented. It was shown that the derived MGLRT of range distributed targets is much more effective in 
detecting targets distributed in range than a M out of K detector cascaded with a single point target Kelly 
detector. In fact a solution to abate the deleterious effect of the secondary data being contaminated by 
desired signal is to detect all the target scatterers within the data block using the MGLRT for range 
distributed targets (such as a formation of targets). 

Finally, the MGLRT associated with detecting a single point target with signal contaminated 
secondary data was also derived. It was shown that surprisingly, this detector is ineffective in solving this 
problem. 
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Appendix A 
PROOF OF LEMMA Al 

Lemma Al: Let A be a K x N matrix, and t/,, U2 be two N x M matrices such that 

1. Sp(C/|) = Sp(U2) where 5/? denotes Span of, 

2. M < N, 

3. £/>. = /„, i = 1, 2, 

then 

\AU.\     = \\AUA II 1 II psv II 2" psv 

proof: Since Sp(U{) = Sp(U2), we can find an M x M matrix 5 such that Ux — U2B. Now 

U"U. = BHU2
HU2B = BH5 = /„. (AD 

Thus B is unitary and 

Ut/,11      =  \\AUM      =  |Ut/,|    . (A2) I I N psv II 2     H /Mi' II 2 II /ttv 

D 
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Appendix B 
PROOF OF LEMMA 2 

Before proofing Lemma 2, we prove the following. 

Lemma Bl: Let A be a N X N nonsingular matrix, saniVx 1 vector, and b a K x 1 vector with K > 
N. Define B = [A : 0NK_N] - sb". If B has rank N - I, then the AT + 1st through ZTth elements of b 
are zero. 

proof: The matrix BBH also has rank N - 1. We can write 

flBH = (A - sbo)(A - sbö1) + ass", (B1) 

where b0 is a N-length vector equal to the first N elements of b and a equals the sum of the magnitude 
squares of the last K - N elements of b. Now if B has rank N - 1 there exists an N-length vector, u, 
such that uuB = 0. Thus 

uHBBHu = uH(/4 - sb^iA - sb0
H)"ii + a|uHs|2 = 0. (B2) 

Since (A - sb")(/4 - sb<f)H is a positive semi-definite matrix, (B2) implies if a ^ 0 that uHs = 0. In 
this case it follows that uHA4Hu = 0 which contradicts the assumption that A is nonsingular. Therefore 
a = 0 and Lemma Bl follows ^ 

We now prove Lemma 2. Let Z = [L : 0^-jvlß be the ß - R decomposition of Z where L is an N 

x A^ LTM and Q is a K x K unitary matrix. Now if Z - saH has rank N - 1 thtn[L:0NK_N] - sao 

has rank// - 1 where a^ = aHßH. From Lemma Bl, the last K - //elements of a,, must be zero. Thus 

there exists a s such that 

agr - s  L, 

where a^ are the first iv* elements of ag and L is nonsingular. Hence 

aH = sH[L:0]ß = sHZ, 

and the lemma follows. 

(B3) 

(B4) 

D 
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Fig. 1 — Performance comparison of a single point scatterer Kelly detector with the GLRT detector of 
a distributed target(s): one scatterer, N = 8, K = 15, PF = 10~2, white noise interference. 
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Fig. 2 — Performance comparison of a single point scatterer Kelly detector with the GLRT detector of 
a distributed target(s): two scatterer, N = 8, K = 15, PF = 10"2, white noise interference. 
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Performance comparison of a 1 out of K Kelly detector with the GLRT detector of a distributed 
one scatterer, N=%,K=\5,PF = 10~2, interference is a 30 dB jammer plus white noise. 
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Fig. 4 — Performance comparison of a 1 out of K Kelly detector, 2 out of K Kelly detector with the 
GLRT detector of a distributed target(s): two scatterers, N = 8, K = 15, PF = 10"2, interference is a 
30 dB jammer plus white noise. 
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